If it's not what You are looking for type in the equation solver your own equation and let us solve it.
105x^2-950x+881=0
a = 105; b = -950; c = +881;
Δ = b2-4ac
Δ = -9502-4·105·881
Δ = 532480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{532480}=\sqrt{4096*130}=\sqrt{4096}*\sqrt{130}=64\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-950)-64\sqrt{130}}{2*105}=\frac{950-64\sqrt{130}}{210} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-950)+64\sqrt{130}}{2*105}=\frac{950+64\sqrt{130}}{210} $
| 2x+14x=9 | | 3=7x=24 | | 14x=9+ | | 7m-16=-4m-7m | | 3=a+-13 | | 18a^2+60=0 | | 2x+6-x/3=3 | | y=6.45 | | -29=-5-3n | | x/7+3=-9 | | x^2-3x=9=7 | | x-6=14-3x+8x | | 300+30x=3000 | | 16=4xV | | 5+a/2=-2 | | 4x-2-x=7-(x+1) | | 10.9+15.9+x=31.2 | | -8+15a=11a | | 1/3(9t-6)=t+6/6 | | x=1.92=3.35 | | -18x+4=-212 | | 8=14b | | 2x-10=1- | | 5+(x-7/10)=8,7 | | 7+8n-2n=7+6n | | 7-10=p8-5 | | 2.2x+2.2=4.4 | | 2x-35=101 | | 2x+0.8=10.8 | | 21y-1+9*15-38=180 | | (2x-3)(3x+2)=(x+1)(x+1)+(5x+2)(x-14) | | 7+6p=13 |